Parabolic finite volume element equations in nonconvex polygonal domains
نویسندگان
چکیده
منابع مشابه
Parabolic Finite Volume Element Equations in Nonconvex Polygonal Domains
We study spatially semidiscrete and fully discrete finite volume element approximations of the heat equation with homogeneous Dirichlet boundary conditions in a plane polygonal domain with one reentrant corner. We show that, as a result of the singularity in the solution near the reentrant corner, the convergence rate is reduced from optimal second order, similarly to what was shown for the fin...
متن کاملParabolic Finite Element Equations in Nonconvex Polygonal Domains
Let Ω be a bounded nonconvex polygonal domain in the plane. Consider the initial boundary value problem for the heat equation with homogeneous Dirichlet boundary conditions and semidiscrete and fully discrete approximations of its solution by piecewise linear finite elements in space. The purpose of this paper is to show that known results for the stationary, elliptic, case may be carried over ...
متن کاملError Estimates for the Finite Volume Element Method for Parabolic Equations in Convex Polygonal Domains
We analyze the spatially semidiscrete piecewise linear finite volume element method for parabolic equations in a convex polygonal domain in the plane. Our approach is based on the properties of the standard finite element Ritz projection and also of the elliptic projection defined by the bilinear form associated with the variational formulation of the finite volume element method. Because the d...
متن کاملError Estimates for the Finite Volume Element Method for Elliptic Pde’s in Nonconvex Polygonal Domains
We consider standard finite volume piecewise linear approximations for second order elliptic boundary value problems on a nonconvex polygonal domain. Based on sharp shift estimates, we derive error estimations in H –, L2– and L∞–norm, taking into consideration the regularity of the data. Numerical experiments and counterexamples illustrate the theoretical results.
متن کاملError Estimates for a Finite Volume Element Method for Elliptic PDEs in Nonconvex Polygonal Domains
We consider standard finite volume piecewise linear approximations for second order elliptic boundary value problems on a nonconvex polygonal domain. Based on sharp shift estimates, we derive error estimations in H1-, L2and L∞-norms, taking into consideration the regularity of the data. Numerical experiments and counterexamples illustrate the theoretical results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Methods for Partial Differential Equations
سال: 2009
ISSN: 0749-159X,1098-2426
DOI: 10.1002/num.20351